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Fractal analysis of martensite in an Fe-Ni alloy 
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In general, microstructures can be described by microstructural parameters such as grain size 
or particle spacing, e.g. an average value can be obtained by quantitative metallography. In 
some cases these methods of classical quantitative metallography fail. For example, martensitic 
microstructures may appear highly disordered at the transition to microstructural chaos. They 
cannot be described by any average crystal size or particle spacing. A new approach has been 
applied to characterize a martensitic microstructure of an Fe-Ni alloy by fractal analysis. This 
includes the amount of martensite as well as the size spectra of martensite crystals and the 
distribution of residual austenite. In addition, the interface length martensite/austenite and the 
interface density were determined. 

Nomencla ture  n (1) 
martensite 

[3 austenite N (1) 
d Euclidian dimension: 0, 1, 2, 3 
D fractal dimension p (~tm- i) 
f~ (1) volume fraction of martensite 
f~,x (1) volume fraction of martensite S (pm) 

transformed by one iteration 
f~ (1) volume fraction of austenite S (p~m) 
f~,0 (1) initial volume fraction of austenite Sx (gm) 
f~,~ (1) volume fraction of retained aus- 

tenite after x fragmentations T O (~ 
AH~ ( jg-1)  transformation enthalpy for a 

generation x T~ (~ 
Lo (gin) ~ 3 ~ initial interface line length 
L~ (l~m) interface line length after x flag- A T (~ 

mentations 
Ms (~ martensite start temperature x (1) 
Mf (~ martensite finish temperature 

reduction in scale by one iteration 
X 

number of segments of the fractal 
motive 
interface density martensite/aus- 
tenite 
distance between areas of retained 
austenite 
average austenite grain diameter 
average martensite crystal length 
for a generation x 
temperature of metastable ther- 
modynamical equilibrium 
transformation temperature for a 
fragmentation x 
undercooling below To; A T = Ms 
- : r  o 

number of self similar iterations; 
fragmentation, generation crystals 

1. I n t r o d u c t i o n  
In general, microstructures can be described by micro- 
structural parameters such as grain size or particle 
spacing. By means of quantitative metallography it is 
possible to obtain average values for these quantities. 
For microstructural elements the Euclidian geomet- 
rical dimension, d, is usually used (T-able I). 

Martensite belongs to microstructures at the trans- 
ition to chaos. In this case the methods of classical 
quantitative metallography cannot be applied because 
it is impossible to obtain an average particle spacing 
for martensite crystals. For a better characterization 
and understanding of martensitic transformation, 
fractal analysis could be a helpful "non-classical" 
method. 

First, Mandelbrot [1] worked on systematic de- 
scription of chaotic phenomena. Later, Hornbogen 
applied fractal analysis in material science to dis- 
ordered and rugged morphologies [2-4]. 
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The Sierpinski-gasket (Fig. 1) provides an analogy 
for a geometrical treatment of stepwise transformation 
to martensite. The triangle in Fig. 1 shows a simple 
model for formation of martensite, ~, in an austenite 
grain, 13. With every fragmentation, x, the number of 
segments, N, increases, whereas the size of an element, 
n, decreases. In contrast to the Euclidian dimension, d, 
the fractal dimension, D, need not be an integer. D is 
defined as 

log N 
D - (1) 

log 1/n 

The transformation from austenite [3 to martensite :~ 
starts at the austenite grain boundaries (Fig. 2). The 
transformation begins at the martensite start temper- 
ature, Ms, and is completed at the martensite finish 
temperature, Mr. Ms is determined by the temperature 
of the metastable thermodynamic equilibrium, T 0, 
and the necessary undercooling, A T, to nucleate the 
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T A B L E  I Euclidian dimension of microstructural elements 

d Element Hardening mechanism 

0 interstitial atom solid solution hardening 
1 dislocation work hardening 
2 grain boundary fine grain hardening 
3 dispersed particle precipitation hardening 

x=O x:1 

X :  2 X : 3  

Figure 1 Sierpinski-gasket formed by subsequent fragmentations 
of a triangle; used as a model for martensitic transformation, cq in an 
austenite grain, [3. 

Figure 2 Subsequent formation of three generations of lenticular 
martensite crystals (schematic drawing) [4]. 

3. Results and discussion 
Fig. 3 shows a plot of the calorimetric measurements. 
The transformation from austenite to lenticular mar- 
tensite proceeds stepwise in three generations. The 
transformation temperatures are indicated for every 
fragmentation. The transformed volume fraction can 
be calculated by dividing the enthalpy of each genera- 
tion by the total enthalpy. The results are given in 
Table II. As the transformation is incomplete the total 
transformed volume fraction was determined b y ,  
quantitative metallography to 73%. This quantity was 
considered in the calculations in Table II. 

Fig. 4a shows the microstructure of the transformed 
DSC specimen. In accordance with the DSC measure- 
ments three generations of martensite crystals can be 
identified. Fig. 4b shows the microstructure of the 
same alloy after cold-rolling at T = - 196~ It is 
closer to chaos than in Fig. 4a. 

The self-similarity was tested by considering the 
ratio of length to thickness of the lenticular martensite 
particles. This ratio has to be constant. Subsequently, 
the average size and distribution function of different 
martensite generations were measured. The volume 
fraction as a function of number of fragmentations, x, 
is illustrated in Fig. 5. 

At 7"1 = Ms the first generation x = 1 forms with an 
extension, $1, corresponding to the original austenite 
grain diameter. It transforms a volume fraction 
0 <f~,x = t = 22.5% < 1. The second generation 
x = 2 can form at austenite/martensite interfaces at 
T 2 < T 1 with a spacing, S 2, and a volume fraction 
0 <f~,x = 2 = 39.9% < 1 in the untransformed spaces, 
etc. The number of possible fragmentations, x, 

transformation 

Ms = T o -  AT (2) 

In tenticular martensite a fractal microstructure 
forms, which can be characterized as: (i) more than 
x >_ 3 self similar fragmentations should be distin- 
guishable (here generations of martensite crystals); 
(ii) a constant fractal dimension D ~ d and self sim- 
ilarity should be observable for a range of more than 
one order of magnitude. 

2. Experimental procedure 
An iron-30.25 at % nickel alloy was melted as a 50 g 
button in an argon arc furnace using iron and nickel of 
electrolytic purity as starting material. The button was 
hot rolled (reduction in thickness of about 50%) and 
homogenized for 24 h at 1200 ~ An average grain 
size of g = 190 gm was established. 

For differential scanning calorimetric (DSC) meas- 
urements, the "DuPont  Thermal-analyser 9900" was 
used. The cooling rate amounts to 1 ~ min-  1. 

The analysis of volume fraction martensite and 
austenite, respectively, and the determination of mar- 
tensite/austenite interfaces were carried out with the 
"Quantimet 520" (Cambridge Instruments): In addi- 
tion, the volume fraction of martensite was deter- 
mined with calorimetric measurements. 
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Figure 3 Heat flow and transformation enthalpy (see Table II) of 
Fe-30.25at % Ni during the transformation from austenite to 
martensite, The transformation takes place in three sequential steps 
(transformation temperatures as indicated); mean cooling rate 
1 ~ min-  1. 

T A B L E  II Enthalpy of martensitic transformation and calcu- 
lated volume fraction for different fragmentations 

Fragmentation T x (~ C) A n  x (j g -  1) f~,x (%) 

x = 1 - 45.63 1.734 16.75 
x = 2 - 58.80 3.408 32.92 
x = 3 - 71.88 2.415 23.33 

Total - 7.557 73.00 



Figure 4 Microstructure of the transformed DSC specimen. 
(a) Undeformed, (b) cold-rolled at T = - 196 ~ 

depends on the austenite grain diameter and on lateral 
growth of martensite. With increasing fragmentation 
further transformation becomes more and more diffi- 
cult. Therefore, a large austenite grain size favours an 
increasing number of fragmentations�9 

It must be noticed that in the formation of the 
second generation the greatest volume fraction trans- 
forms. Normally it would be expected that the size of 
the transformed martensitic volume decreases with 
every fragmentation. In this case, it cannot be ex- 
cluded that this result is a question of the selected 
picture detail because earlier measurements confirmed 
the expected decrease of the volume fraction with 
further transformation [5]. 

A fractal analysis of the residual austenite is also 
possible. The volume fraction, fo,13 is given by f6 = 
1 - f .  The spacing, S, is connected to the distance 
corresponding to neighbouring islands of different 
generations of residual austenite. The results are 
shown in Fig. 6. This figure also illustrates clearly that 
during the formation of the second generation the 
main volume fraction transforms. 

It is evident from the model in Fig. 1 that the area 
and therefore the volume fraction, f o, of the original 

�9 IJ 
triangle decreases in every fragmentation x by a factor 

/ 3 \  
f~,x + l = f~,x (N n) = f~,x ~ ~ ) (3) 

= f ,0 (4) 

f~,~ = 1- f~ ,~  (5) 

J~,0 = 1 (6) 

where f~,0 is the initial volume fraction of austenite. 
The fractal dimension can be calculated using 

Equation 1. With n = �88 (the size of ~ in the triangle) 
and N = 3 (number of segments [3), the fractal dimen- 
sion is D ~ 0.792. Fig. 7 shows the results. The volume 
fraction of retained austenite is plotted as a function of 
fragmentation x, temperature T and (l/n) ~. 

The theoretical values from the Sierpinski-triangle 
are added to the results from the quantitative and 
calorimetric measurements. The quantities for the sec- 
ond and third generations are clearly below the theor- 
etical values whereas the volume fraction of the first 
generation is slightly greater. 
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Figure 5 Volume fraction of martensite and size distribution as 
function of the number of fragmentations, x. 
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Figure 6 Variation of volume fraction and distribution of residual 
austenite with the number of fragmentations, x. 
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The length of the interface between austenite and 
martensite, L~, depending on the number of frag- 
mentations and temperature, was also measured. For 
the Sierpinski-gasket in Fig. 1 the line length of the 

Figure 7 Decreasing volume fraction, f13, of residual austenite dur- 
ing martensitic transformation with (a) the number of fragmenta- 
tions, x; (b) temperature, T, and (c) (l/n) -~ for n = �88 according to 
( . . . )  quantitative and ( - - . - - )  DSC measurements and ( - - )  
values for the Sierpinski-triangle. 

new triangle is n = �89 of the original triangle and the 
number of the created interface lines is N = 3. This 
provides a fractal dimension of D = 1.585 (Equation 
1). The length of the interface, L~, increases with every 
iteration 

Lx+ 1 = ( N n ) L  x 

3 
= ~ L~ (7) 

L= = L o (8) 
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Figure 8 Increasing length of interface between martensite and austenite with (a) number of fragmentations, x and (b) temperature, T. 
(Quantimet.) 
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Figure 9 Increasing interface density as function of (a) number of fragmentations, x, and (b) temperature, T. (Quantimet.) 
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The initial line length was correlated to the average 
grain diameter, Lo ~ 3 S [3]. The results are illustra- 
ted in Fig. 8. 

The interface density can be calculated from 

Z L  2 

9 -  L~ (9) 

The calculations are represented in Fig. 9. The phys- 
ical relevance of the model is not yet clear but the 
evidence of the fragmentation is indisputable (see Figs 
3 and 4). If a quantitative description of fractal micro- 
structures is possible, a derivation of relations between 
microstructures and properties should also be possible 
but this is an almost unexplored field. To provide 
evidence for this relation it is necessary to investigate a 
certain number of specimens. 
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